脆性材料的延性磨削——纳米磨削技术

发布时间:2010-09-19
分享到

当今,在光学和电子零件加工中,都力图提高精度和集成度,不仅是零件加工,而且对作为精密模具、机械零件、测试仪器零件最终加工工序的磨削加工也提出了超精密化的要求。此外,随着新材料的开发,陶瓷等作为结构零件材料在某些特殊场合已经得到了应用,这些新材料均属于难切削材料,其结果不仅提高了磨削的比重,而且还促进了磨床、磨削加工方式和工艺以及其它相关技术的发展。
随着以工程陶瓷为主体的非金属材料逐渐成为工程技术重要材料,各国还开发了适应加工这类工程陶瓷的超精密平面磨床。陶瓷材料的特点是硬而脆,其硬度是碳钢的10至20倍,而断裂韧性仅为碳钢的几十分之一。陶瓷材科的性能对粗糙度、破损度、平面度等平面参数十分敏感。陶瓷材料的磨削机理与金属材料不同,主要有三个特点:砂轮损耗大,磨削比低3磨削力大,磨削效率低3由于磨削条件不同,会使加工零件的强度发生变化。
根据以上这些特点,各国都致力开发了适合进行纳米磨削的超精密平面磨床,并且进行了脆性材料的可延性磨削技术的研究。首先介绍一下进行纳米磨削研究必须具备的超精密平面磨床。


1 超精密平面磨床发展概况
1.1 概述

精度作为平面磨床的一项重要的考核指标而越来越受到各国专家的重视,因此平面磨床加工精度有了新的突破。微米以下进给机构是超精密平面磨床的关键技术之一。目前,很多平面磨床己实现了最小进给量0.1μm,如德国Z&B公司 PSG—60磨削中心、JUNG公司.JP800龙门式精密平面磨床、 STEFOR公司只TM龙门磨床等均实现了砂轮最小垂直进工量0.1μm。日本平面磨床制造厂实现0.1μm进给量的厂家更多,如冈本公司OMA— 450DXNC、三井精机 HIGH—TECHCNCMSG—614、大隈铁工所GS—36N、不二越 NSP—50、长濑铁工所SGU—52等。各国制造厂为实现这种微小进给一般都采用精密数控系统,最大限度地缩短进给传动链等措施来满足机床这一要求。日本大阪府立工业技术研究所精密机械研究室己研制出定位精度高达0.05μm的高分辨率磨削用微量进给装置。
通过深入研究发现,陶瓷等脆性材料超精密磨削,要求磨床必须能保证作0.1μm的进给。为提高主轴刚性,选用大直径轴承:为提高运动精度,多采用液体或气体静压支承方式主轴及导轨;为防止陶瓷表面出现裂纹,砂轮线速度以20—30nI/s为宜:主轴回转精度提高到N×10-1μm甚至N×10-2μm,使能作镜面磨削;主轴转速需能无级变速,以便选取最佳磨削条件。此外,还需要砂轮修整及平衡装置、机械电气性能稳定的运动系统等。
为了提高机床的热稳定性,机床普遍采用温控装置,采取适当措施消除磨床本体、磁力吸盘、磨头电机、主轴轴承和液压系统的发热,使机床在整个工作过程中保持精度稳定性。
有的机床还有振动监视系统,消除由于弹性振动而产生的工件表面容削痕迹。超精密平面磨床不仅适用平面磨削,更应适用各类高精度成型表面和沟槽磨削。既可作常规复式磨削,也可作缓进给成型磨削。


1.2 国外主要超精密平面磨床介绍
1.2.1 住友重机械公司的KSX—815超精密平面磨床

在八十年代,超精密车削加工技术在美国、英国及日本等国发展较快,可加工铝、铜合金的镜面。但是随着机床工业的发展,对床身、导轨、立柱等大中型结构件的精度的要求不断提高,单靠手工研磨已不能适应生产发展的需要,例如三坐标测量机的横梁,陶瓷工件的加工直线性要求1μm/1800mm:半导体制造方面也要求0.5—lμm/500*500mm2如此高的精度,在这种情况下,于1985年该公司开始研制这台机床,历经6年,共研制了四台样机。最终研制成功的KSX—815超精密平面磨床获得日刊工业新闻社选定的1991年“十大新产品奖”。

 

1.2.1.1 主体结构

主体结构采用了保证磨头在整个移动范围内具有足够刚性的龙门式横梁导轨固定结构,对主体的动特性和热特性有最大影响的主立柱采用铸铁和树脂混凝土复合结构。树脂混凝土在欧美及日本制造的机床的床身上目前己得到了相当普遍地应用,其优点是衰减能力(对数衰减)是铸铁的10倍,热传导系数是铸铁的1/100,本机床采用的是该公司开发的具有高稳定性的环氧混凝土。
主立柱与限程立柱的连接部,为了提高结合刚性,采用铸铁制作,中间部则完全采用树脂混凝土制作。此外,树脂混凝土和铸铁的接合部,采用大面积粘接,以确保连接强度。
床身和横梁,采用了箱性铸造结构,以确保具有充分的刚性。


1.2.1.2 主轴结构

(1)液体静压轴承
主轴采用高刚性、高衰减性的液体静压轴承。主轴悬伸量很小,并与止据环成为一体,进一步提高了刚性。除了静压油进行冷却以外,对轴瓦的外圆和主轴内部同时供给冷却油,彻底控制温升。


(2)驱动方式
为控制电机产生的振动传给主轴,采用了以下的驱动方式:
A:采用皮带驱动,主轴电机安装在树脂混凝土底座上;
B:电机皮带轮采用了卸荷装置;
C:主轴皮带轮同样采用了液体静压轴承卸荷装置,以防止皮带的张力和振动传递给主轴;
D:砂轮通过液体喷射动平衡装置进行全自动平衡。


1.2.1.3 工作台及其进给机构

(1)导轨
为了稳定地保持加工直线度为lμm/1000mm,工作台的导轨面采用了发热小和不因速度变化时产生动压效果而造成工作台上浮的V—F表面节流空气静压导轨。
(2)驱动系统
工作台通过高速运动时能获得良好直线性的液压油缸驱动(1—30mm/min)和低速运动时可获得稳定的低速运转的滚珠丝杠驱动(0.01—1m/min)的切换方式,可以获得从高速磨削到低速的缓进给磨削的宽阔的速度范围。
液压油缸采用特殊的非密封方式。可消除磨擦引起的阻力和发热,进而在油缸上配备冷却旋管,还可防止工作台主体的热变形。
(3)磨头进给机构
导轨采用油静压导轨,磨头的驱动是采用由AC伺服电机和超精密丝杠直接驱动方式,反馈由分辨串为0.1μm的光栅尺进行全闭环控制。滚珠丝杠采用中空油冷却方式,防止发热和进给不均匀。纵向、横向进给都配有油压缸的平衡装置,以实现稳定的亚微米级进给。
(4)外围设备


砂轮修整装置


砂轮修整装置装在磨头架主体上,可以自由运动。修整砂轮时,修整器的接近及切入进给由AC伺服电机和滚珠丝杠的NC控制.


磨削液的处理装置


为防止磨削面的划伤,本机床磨削液处理装置带有磁性冷却液分离的纸质过滤器。
此外,磨削液的温度对大、中型零件的磨削精度有直接的影响,因此本机床备有磨削液温度控制装置,对机床主体温度可在土0.2℃范围内跟踪控制。


各种油压装置


工作台驱动、静压导轨、主轴静压轴承、波珠丝杠冷却用的工作油供油装置均与机床主体分开设置,并通过上述的温度控制装置保证机床温度的稳定。空气压缩机和空气净化、温控装置也与机床主体分开设置。


控制装置


本机床的磨头、修整器和工作台的低速驱动均由NC装置控制。#p#副标题#e#


1.2.1.4 加工实例

磨削1500mm的工件,直线度达到0.9μm。磨削500×500mm的平板,其平面度达到1μm。


1.2.2 西铁成公司的SG—530型NC超精密平面磨床

本机床为了尽可能地提高精度,消除了磨擦、间隙等非线性因素,基本手段是采用静压轴承。为控制由于热引起的机床变形,采用了对称两支承门型结构以及两端支承主轴结构。主要规格如表2所示。


1.2.2.1 工作台左右(x)轴

本机床采用伺服电机和滚珠丝杠驱动,滚珠丝杠的螺母装入具有寓合器功能的第二工作台上,第二工作台在和工作合同一导轨面上,仍旧是静压导轨的独立工作台,两工作台之间只有轴向力。这种结构的优点如下:
(1)能提高驱动系统的响应频率:
(2)能防止因滚珠丝杠每转的运动误差引起的工作台的窜动;
(3)能隔离丝杠轴高速回转时的振动:
(4)能衰减反转换向驱动时的振动:
(5)用离合器部分的静压油能作热隔断在高速回转时螺母处的发热。
床身导轨面的直线性为1μm/500mm。工件的夹紧采用特殊的电磁吸盘,只是在工件装卸时通电,加工中用其残余磁力吸着,没有发热问题,夹紧力大小也可调整。


1.2.2.2 溜板前后(Y)轴

由于有沟槽加工的要求,所以 Y轴驱动方向的间隙也必须消除。不仅将工作台作成静压导轨,而且使用了静压丝杠,进一步靠具有0.1μm分辨率的玻璃刻度尺进行闭环控制。静压丝杠在间隙、直线性、衰减性、精度保持等方面优越,但强度、刚度与滚珠丝杠相比较弱,制造工艺复杂Y轴的直线性为1μm/300mm。


1.2.2.3 砂轮上下(z)轴

静压导轨,靠具有0.1μm分辨串的玻璃刻度尺进行闭环控制。


1.2.2.4 主轴

原始型与双支承型。原始型砂轮位置在轴承支承部分的凸出部,提高支承部分的刚度以及轴的刚度才能提高整体刚性。但受到砂轮的大小、主轴头架的大小的限制。原来的砂轮头架以立柱一例的拖板为支点的悬臂梁结构,提高刚性上有大障碍。另一方面对热变形也存在同样的问题,对于原平面磨床,整个主轴头架是延伸,变形量大。本结构相对原主轴径向刚度增加5倍以上。中心轴下方的固定部分靠杠杆运动,可以开关,上方的固定部分和杠杆支承部分的同时,能组装在可能上下动作这拖板,在上下方向上定位后,夹紧在主轴头架上,这全靠操作盘开关操作动作,而支承点上下方向的调整,靠安装在主轴头架上部的调整丝杠进行。


1.2.2.5 温度控制

在本机床上,将静压轴承使用的油温度控制不变,热隔断在机床个部分上发生的热,能抑制温度梯度,也能控制磨削液的精度,在本机床采用±0.1℃以下高温度控制系统。


1.2.2.6 加工实例

加工500×300mm的平板,用自动准直仪测量其平面度为0.6μm。加工用于激光打印机的透镜(复曲面,即 XZ断面和YZ断面具有不同的曲率半径),其形状精度可达0.63μm。

 

1.2.3 冈本工作机械制作所的UPG—63NC超精密平面磨床

冈本工作机械制作所是日本最著名的磨床制造厂之一,创建于1925年,此后一直从事磨床生产。主要产品有平面、仿形、内圆磨床和齿轮夹攻机床等。其中以平面磨床规格最多、产量最大。其销售额约占日本总销售额的20%。
早在1968年,冈本公司制造了世界上第一台NFG—5型NC成型磨床,成为数控磨床的先驱。此后10余年一直致力于数控磨床的实用化,80年代就批量生产数控平面磨床。该公司注意在开发高档平面磨床的同时,积极发展中低档数控平面磨床。
冈本公司最新研制的UPG—63NC精密成型磨床具有较高的水平。概机床主要用来以高精度和高效率地磨削具有复杂形状的金属模具和精密零件。
该机床在结构上具有重心低的特点。立柱宽、床身低、牢固的筋条布局、合理的壁厚使机床刚度、平衡性和稳定性好等。机床的三向导轨刚性较高,纵向采用双V滚珠导轨、横向是双 V滚柱导轨,垂直导轨则采用涂TURCITE耐磨材料的 H型高刚性结构。垂直和横向可实现同时二坐标控制,最小垂直进给量为0.1μm。垂直和横向用的滚珠丝杠,其外径为40mm,中间通内循环冷却水,因此可保证稳定的进给量。
机床采取了许多防止热变形措施,液压油用油温控制。衔温水通过热交换器,使液压油经冷却后再进行循环,电磁吸盘也用水冷却。
砂轮修整器装在工作台最右边,通过同时控制Y和Z轴把砂轮修至规定形状。用NC装置发出指令,金刚石修整器可以倾斜成任意角度,可避免在修整时砂轮和金刚石修整器的干涉。该机床采用间断修整法,到最后精磨时再修整轮廓。这样,既达到高精度磨削,又大大减小了砂轮磨损。


高刚度结构


通过采用加大砂轮头架和立柱接触面的独特立柱部件结构,采用立柱移动式。


静压导轨


通过将砂轮轴的上下走刀轴作成油静压导轨,能实现0.1μm分辨率的定位精度。将工作台左右走刀做成六面制约的静压导轨,不会因悬浮引起工作台倾斜,加工直线性、平面度好。可以测量、补偿因工作台浮起的尺寸减小,确保尺寸精度。用自准直光管测量,垂直面内俯仰为0.6μm/750mm,水平面内偏摆为 1.1μm/750mm大拖板前后走刀为静压导轨,能作垂直度、平面度很好的加工,也能进行高间距精度的沟槽加工。
同时进行压力、流量控制,当压力下降时,安全开关工作,自动停车。进行污染控制,不用担心因异物混入引起主轴损坏。静压油温度利用自动温度调整装置控制,保证加工精度。


砂轮轴为油静压轴承


采用水冷式全封闭内装式电机(己作动平衡)驱动,以减轻主轴系统
的振动。进行全自动砂轮动平衡。主轴回转精度在0.1μm以下。


热位移对策


工作油、静压油以及油流的温度独立控制。


丰富的加工软件


自动磨削循环、修锐循环、位移切入循环等。#p#副标题#e#


(2)运动复印功能的误差极限


磨削开始压力Fth(当工”具和工件之间的压力达到Fth时磨削加工开始进行)和能进行磨削的区域,磨削开始压力对应的弹性变形量为:
当设定进给量小于Δ时,材料除去不能进行,所以,形状误差和尺寸误差的修正功能极限也即为么。运动复印功能的极限都受到加工系统的刚度Km的支配,要进行纳米磨削技术的研究,必须控制运动复印误差的极限为纳米级,所以原来的磨床刚
度明显不足。
利用金刚石进行的切削试验中所得到的延性、脆性迁移点dc值,在磨床设计中应予充分考虑。也就是砂轮工作面上各个磨粒切削刃的进给量应控制在dc值以下,必须规定规定必要的机床运动精度、刚度和磨削砂轮的修整加工精度,具体方案如下:
工作台的走刀分辨率:dc/10工作台的走刀直线性:dc/每走刀行程工件、砂轮系统支承刚性:>磨削负载/走刀分辨率工件、砂轮支承系统运动精度;<dc修整加工精度:<dc砂轮切削刃高度分布:<dc利用满足如上条件的超精密、高刚度机床,可以进行脆性材料的超精密、大批量生产的纳米磨削技术的研究。


2.3.3 基于运动复印原理的超精密磨削加工技术

使用粗磨粒磨削砂轮也能延性方式磨削,也就是进行纳米磨削加工,要求磨床具有高刚性、超精密化,同时测量系统、控制系统的毫微米技术在机床开发中也不可忽视。尺寸精度、形状精度、表面粗糙度等加工精度和机床的运动,磨削砂轮的几何学和切削刃高度分布的相互关系在超精密加工技术领域必须加以考虑。
零件加工尺寸误差由机床进给系统的分辨率决定,形状误差则由砂轮的几何误差、工件、砂轮支承系统的运动误差决定,粗糙度主要由砂轮工作面上的切削刃高度分布所决定。从上述分析可以看到机床的运动误差,磨削砂轮和磨粒切削刃高度分布的几何误差能复印工件尺寸误差、形状误差和粗糙度,是利用运动复印原理的超精密磨削技术的基础。


2.4 脆性材料延性方式磨削的实现

通过工件和工具的相对运动的材料去除机理,相互间的运动精度对材料的破坏机理起着支配作用,工件和刀具间的干涉量d比dc值大时,成为脆性方式去除加工,此时运动复印误差大,反之则成为延性方式去除加工,运动复印误差小。要实现延性方式磨削。砂轮工作面上所有的切削刃,必须保证从刚修整加工开始到加工结束满足上述条件。
脱落磨粒的直径比dc值大时,可能产生裂纹或划伤。因此,进行延性方式磨削的条件可以分为:用磨粒粒径比dc值小的微粒磨粒磨削砂轮、比dc值大的粗粒磨粒磨削砂轮进行磨削两种情况。将前者称为!型,后者称为II型。基于这种延性方式磨削的成立条件、分类及其相关技术课题。

 

在基于运动复印原理的IA型上,砂轮回转精度和走刀分辨率都要求比dc值小,且要求具有很高的刚度以保证能进行小于dc值的微量进给。与此相比,对于根据压力复印原理的IB型,要求机床具备加工压力设定功能。
在延性方式磨削II型上可以使用磨粒粒径比dc值大的粗粒砂轮,为了能进行小于此值的微细砂轮进给,机床必须具有必要的走刀刚度。磨粒粒径越小,刚性便要求越大。由于进一步提高刚性较为困难,因此如有可能,应尽量利用粗粒砂轮。另一方面,当磨粒粒径比dc值大时,磨削中的脱落磨粒、破碎磨粒粒径也比dc值大,于是在加工面上产生了裂纹。所以,在原来的磨削加工,将因磨粒的破碎自锐作为前提的概念己不能适用。要进行延性方式磨削,必须对磨削砂轮进行新的研究,而将砂轮工作面上的磨粒切削刃高度分布和砂轮回转振摆的精度要求小于dc值,此时超精密修整加工技术也是不可缺少的。
通过以上论述,根据脆性材料延性方式磨削条件,利用运动复印原理,使用粗粒砂轮的II型的延性方式磨削技术是最有效地创成自由曲面的新技术。我们称II型延性方式磨削技术为纳米磨削技术。最近,中川、大森整等利用铸铁纤维结合剂砂轮,边磨削加工工件边同
时采用了电解在线修整的方式,利用这项技术,原来难以实用的84000-810000细磨粒砂轮可以用来进行硅、玻璃等脆性材料的镜面磨削加工,利用微细磨粒的磨削也可称为纳米磨削技术。


2.5 脆性材料的延性方式磨削的例子

脆性材料的磨削,许多学者通过研究已经得到了研抛的加工面。宫下等通过具有微量进给的立式平面磨床磨削水晶,得到像研抛面那样的平面,达到了P—V2nm的表面粗糙度。难波等通过具有热膨胀系数很低的玻璃陶瓷主轴的超精密平面磨床,磨削光学玻璃 NBFl得到Rmax5nm的表面粗糙度。
为了进一步提高加工精度,日本吉田庄一郎等使用超精密加工测量机进行磨削试验。加工时所使用的超精密加工测量机,有x、 z的直线轴和回转轴C构成,x、z拖板,工件轴和砂轮轴使用空气静压轴承。为了尽可能降低振动,在修正动平衡的同时,采用了花岗岩平板和悬重型减震器,x、z轴使用摩擦驱动,靠激光反馈,最小进给单位为0.01μm。磨削砂轮的振动极小,使用这些装置同时利用三轴控制超精密磨削球面透镜(BK7,外径32mm,曲率半径25mm),在工作整个区域内实现了延性方式磨削加工。在本机床上的测量上,工件的形状精0.5μm,靠激光干涉仪得到的真球度为 0.5μm,表面粗糙度为Rmax0.05μm。
CUPE进行了BK7玻璃和Zerodur的延性磨削技术的研究,发现临界切深是10-100nm。使用的是单点金刚石,在超精密车床进行,机床主要特性是(1)主轴的高精度化(振摆10nm以下)、高刚度化(轴向刚度为650N/μm),(2)使用CPE形式1656/3的标准牵引摩擦驱动的高精度走刀(走刀速度在6—500mm/s下,速度变动0.1%以下),(3)使用压电执行装置的1nm分辨率的定位。但是这只能作为理论研究,因为单点切削效率低,改善这一弊病的手段是应用延性方式磨削。因此,在CUPE,开发了超高精度的CNC磨床。
磨床床身材料使用 GranitanS—100,具有0.1μm的分辨率的定位精度,而空气静压轴承具有以下的能力,(1)砂轮轴精度:径向和轴向以起为0.05μm以下,刚度为175MN/m,(2)水冷砂轮轴(±0.1℃),(3)电机的纯传递力矩的联轴器,(4)高刚度空气导轨工作态的精度为0.1μm/150mm, (5)走刀驱动用联轴器等,其他重要光学系统是温度控制±0.1℃,冷却液用过器lμm以下等。


2.6 实现脆性材料的延性方式磨削对磨床及其它的要求

但是,从研究室水平的单点工具作延性方式加工,发展到利用砂轮作延性方式磨削,其中有不少问题,开发高的刚性和高的运动精度的磨床是必不可少的,此外,为保证能够进行微微量切削的砂轮及其修锐、修整技术等也不可忽视。
延性方式磨削,也就是无损伤磨削,主要是通过切削厚度来实现,其值因材料而不同,但都是0.1μm数量级的。而要实现这个临界切削厚度,必须保证磨床的机械精度和磨粒与被切削材料之间的刚度。
近年来,金属结合剂的超硬磨粒砂轮的应用,特别在超精密磨削方面的应用日益广泛,这就要求磨粒粒径变小,同时砂轮的修整及修锐成为支配砂轮的性能的重要因素。现在广泛使用的超硬磨粒金刚石和C8N砂轮的修整及修锐,除了使用原来的修整法以外,产生了许多新的修整方法,如电解在线修整(ELID)等。
磨床应该具备高刚度化、高回转精度化、高滑动精度化和小的热变形。作为磨床主轴,使用Invar、或超Invar、玻璃陶瓷等低膨胀材料,防止热变形,轴承上使用陶瓷滚珠轴承、空气静压轴承、油静压轴承和磁力轴承,实现高回转精度、高刚性、高热刚性、高吸振性,为了减机床本体的热变形,使用低膨胀铸件,也布置冷却水管,并且在主轴电机上使用液体动平衡装置,消除砂轮的不平衡量,工作台使用静压导轨,依靠激光干涉仪,出现具有1nm定位分辨率的非球面加工机床。
在磨床高精度化的同时,机床上的测量装置也应实现在线测量,测量出被加工零件的尺寸、形状精度后,通过再加工以实现高精度加工,特别在超精密非球面磨削中,通过左机床上测量,修正加工来自砂轮的磨损和磨削现象的不确定性的加工误差,以便得到亚微米级加工精度。
作为光学零件要求精度高且表面无缺陷,短波长,特别是X射线光学零件则要求更高的精度。脆性材料单利用磨削就能达到,要求的精度,并尽可能减少研抛工序。这方面有:
(1)加工机械的运动精度对被切削件形状精度的复印;
(2)被切削材抖的微小切屑生成这二个课题。
前者,加工装置的高精度化、高刚性化特别重要。而关于磨削砂轮,则是砂轮形状的高精度化、高刚性化、磨削能力(磨削比)的提高和其保持性。
延性方式磨削的各个问题,特别是加工表面的精度及质量与光学性能的关系,表面形状的分析,热、根源的减少及其隔离以及纳米级测量控制系统,工件材质的选定,工件装卡等要素技术以及外围技术问题的解决,也是实现延性方式磨削加工技术实用化的重要课题。


3 我国开展纳米磨削技术的对策

目前我国虽然刚刚开始脆性材料延性磨削机理方面的研究,但是由于这项技术在国外也只是从八十年代末期真正开始研究,所以只要采取适当的对策,这个差距将不难弥补。根据我国现有国情,应注意以下几方面的问题。
首先应继续开展脆性材料延性磨削机理的研究,并注意随时跟踪国外的发展动向,为纳米技术将来在我国的应用打下扎实的基础。其次尽快研制超精密磨床,特别是 CNC超精密平面磨床。俗话说,“工欲善其事,必先利其器”,目前我国纳米磨削技术难以进一步开展,从而影响其应用的重要原因就是超精密磨削设备的缺乏。最后应该在研究磨削机理的同时,注重纳米磨削技术实用化的预先研究,即根据纳米磨削技术的实际应用领域有针对性地进行基础研究。


4 结论

纳米磨削技术是一门新兴的超精密加工技术,在当今光学、电于等领域得到了一定的应用。这些领域中应用广泛的硬脆材料都可以通过延性磨削技术即纳米磨削技术进行超精密加工,从而替代传统的研磨、抛光工艺,使加工效率大大提高。纳米磨削技术是伴随着超精密平面磨床的研制成功而发展起来的,所以忙研制成功具有高刚性、高进给分辨率、高运动精度的超精密平面磨床成为我国发展纳米磨削技术的当务之急。
 

收藏
赞一下
0